Dieudonné theory via cohomology of classifying stacks
نویسندگان
چکیده
We prove that if $G$ is a finite flat group scheme of $p$ power rank over perfect field characteristic $p$, then the second crystalline cohomology its classifying stack $H^2_{crys}(BG)$ recovers Dieudonn\'e module $G$. also provide calculation abelian varieties. use this to $p$-divisible symmetric algebra (in degree $2$) on module. mixed analogues some these results using prismatic cohomology.
منابع مشابه
Quantum Cohomology of Stacks
From tomorrow onwards, we will be working with toric stacks, but today we’ll be more general. Let f : Γ → X be a stable representable morphism from an orbi-curve to a stack. An orbi-curve is a proper, projective, algebraic curve Γ with some marked points xi. Each of the marked points has a chart of the form [∆/μri ] (where ∆ is a disk and μr is the group of r-th roots of unity). An orbi-curve h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forum of Mathematics, Sigma
سال: 2021
ISSN: ['2050-5094']
DOI: https://doi.org/10.1017/fms.2021.77